Topology optimization of hyperelastic bodies including non-zero prescribed displacements
نویسندگان
چکیده
Stiffness topology optimization is usually based on a state problem of linear elasticity, and there seems to be little discussion on what is the limit for such a small rotation-displacement assumption. We show that even for gross rotations that are in all practical aspects small (< 3 deg), topology optimization based on a large deformation theory might generate different design concepts compared to what is obtained when small displacement linear elasticity is used. Furthermore, in large rotations, the choice of stiffness objective (potential energy or compliance), can be crucial for the optimal design concept. The paper considers topology optimization of hyperelastic bodies subjected simultaneously to external forces and prescribed non-zero displacements. In that respect it generalizes a recent contribution of ours to large
منابع مشابه
Isogeometric Topology Optimization of Continuum Structures using an Evolutionary Algorithm
Topology optimization has been an interesting area of research in recent years. The main focus of this paper is to use an evolutionary swarm intelligence algorithm to perform Isogeometric Topology optimization of continuum structures. A two-dimensional plate is analyzed statically and the nodal displacements are calculated. The nodal displacements using Isogeometric analysis are found to be ...
متن کاملNonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory
In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...
متن کاملNonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique
In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homoge...
متن کاملBehavioral Optimization of Pseudo-Neutral Hole in Hyperelastic Membranes Using Functionally graded Cables
Structures consisting of cables and membranes have been of interest to engineers due to their higher ratio of strength to weight and lower cost compared to other structures. One of the challenges in such structures is presence of holes in membranes, which leads to non-uniform stress and strain distributions, even under uniform far-field deformations. One of the approaches suggested for controll...
متن کاملMETAHEURISTIC-BASED SIZING AND TOPOLOGY OPTIMIZATION AND RELIABILITY ASSESSMENT OF SINGLE-LAYER LATTICE DOMES
Economy and safety are two important components in structural design process and stablishing a balance between them indeed results in improved structural performance specially in large-scale structures including space lattice domes. Topology optimization of geometrically nonlinear single-layer lamella, network, and geodesic lattice domes is implemented using enhanced colliding-bodies optimizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013